您的位置 主页 正文

人工智能首次冲击是哪年?

一、人工智能首次冲击是哪年? 人工智能是在1956年达特茅斯会议上首先提出的。该会议确定了人工智能的目标是“实现能够像人类一样利用知识去解决问题的机器”。虽然,这个梦想

一、人工智能首次冲击是哪年?

人工智能是在1956年达特茅斯会议上首先提出的。该会议确定了人工智能的目标是“实现能够像人类一样利用知识去解决问题的机器”。虽然,这个梦想很快被一系列未果的尝试所击碎,但却开启了人工智能漫长而曲折的研究历程。

  人工智能的第一次高潮始于上世纪50年代。在算法方面,感知器数学模型被提出用于模拟人的神经元反应过程,并能够使用梯度下降法从训练样本中自动学习,完成分类任务。另外,由于计算机应用的发展,利用计算机实现逻辑推理的一些尝试取得成功。理论与实践效果带来第一次神经网络的浪潮。然而,感知器模型的缺陷之后被发现,即它本质上只能处理线性分类问题,就连最简单的异或题都无法正确分类。许多应用难题并没有随着时间推移而被解决,神经网络的研究也陷入停滞。

  人工智能的第二次高潮始于上世纪80年代。BP(Back Propagation)算法被提出,用于多层神经网络的参数计算,以解决非线性分类和学习的问题。另外,针对特定领域的专家系统也在商业上获得成功应用,人工智能迎来了又一轮高潮。然而,人工神经网络的设计一直缺少相应的严格的数学理论支持,之后BP算法更被指出存在梯度消失问题,因此无法对前层进行有效的学习。专家系统也暴露出应用领域狭窄、知识获取困难等问题。人工智能的研究进入第二次低谷。

  人工智能的第三次高潮始于2010年代。深度学习的出现引起了广泛的关注,多层神经网络学习过程中的梯度消失问题被有效地抑制,网络的深层结构也能够自动提取并表征复杂的特征,避免传统方法中通过人工提取特征的问题。深度学习被应用到语音识别以及图像识别中,取得了非常好的效果。人工智能在大数据时代进入了第三次发展高潮。

二、人工智能的发展历史分为哪三 深度学习阶段?

1.人工智能的推理阶段(1950-1970)

这一阶段,大多数人认为,实现人工智能只需要赋予机器逻辑推理能力就可以,因此,机器只是具备了逻辑推理能力,并未达到智能化水平。

2.人工智能的知识工程阶段(1970-1990)

这一阶段,人们普遍认为,只有让机器学习知识之后才可以实现人工智能。在这种情况下,大量的专家系统被开发出来。但人们发现,给机器灌输已经总结好的知识并不是一件容易的事。

3.人工智能的数据挖掘阶段(2000-)

目前,已经提出的机器学习算法都得到了非常好的应用。深度学习技术获得了迅猛的进展。人们希望机器可以通过海量数据分析自动总结学习到知识,从而实现自身的智能化。

三、人工智能简史,好词好句?

人工智能是人类历史上的一项,具有开创性的发明。

四、1956年人工智能的发展处于什么期?

1、1956年,人工智能才被确立为一门学科。

2、人工智能从发展历程分为以下阶段:

人工智能的诞生:1943 - 1956

在20世纪40年代和50年代,来自不同领域(数学,心理学,工程学,经济学和政治学)的一批科学家开始探讨制造人工大脑的可能性。

黄金年代:1956 - 1974

第一次AI低谷:1974 - 1980

繁荣:1980 - 1987

第二次AI低谷:1987 - 1993

走在正确的路上:1993 - 2005

大数据:2005 - 现在

3、在有大数据之前,计算机并不擅长解决需要人类智能来解决的问题,但是今天这些问题换个思路就可以解决了,其核心就是变智能问题为数据问题。由此,全世界开始了新的一轮技术革命——智能革命。

五、人工智能对人类造成冲击实际是哪年?

人工智能是在1956年达特茅斯会议上首先提出的。该会议确定了人工智能的目标是“实现能够像人类一样利用知识去解决问题的机器”。虽然,这个梦想很快被一系列未果的尝试所击碎,但却开启了人工智能漫长而曲折的研究历程。

  人工智能的第一次高潮始于上世纪50年代。在算法方面,感知器数学模型被提出用于模拟人的神经元反应过程,并能够使用梯度下降法从训练样本中自动学习,完成分类任务。另外,由于计算机应用的发展,利用计算机实现逻辑推理的一些尝试取得成功。理论与实践效果带来第一次神经网络的浪潮。然而,感知器模型的缺陷之后被发现,即它本质上只能处理线性分类问题,就连最简单的异或题都无法正确分类。许多应用难题并没有随着时间推移而被解决,神经网络的研究也陷入停滞。

  人工智能的第二次高潮始于上世纪80年代。BP(Back Propagation)算法被提出,用于多层神经网络的参数计算,以解决非线性分类和学习的问题。另外,针对特定领域的专家系统也在商业上获得成功应用,人工智能迎来了又一轮高潮。然而,人工神经网络的设计一直缺少相应的严格的数学理论支持,之后BP算法更被指出存在梯度消失问题,因此无法对前层进行有效的学习。专家系统也暴露出应用领域狭窄、知识获取困难等问题。人工智能的研究进入第二次低谷。

六、人工智能发展历程的第一次热潮是20世纪50年代神经网络相关基础理论的提出?

人工智能的第一次高潮始于上世纪50年代。在算法方面,感知器数学模型被提出用于模拟人的神经元反应过程,并能够使用梯度下降法从训练样本中自动学习,完成分类任务。

另外,由于计算机应用的发展,利用计算机实现逻辑推理的一些尝试取得成功。

理论与实践效果带来第一次神经网络的浪潮。

然而,感知器模型的缺陷之后被发现,即它本质上只能处理线性分类问题,就连最简单的异或题都无法正确分类。

许多应用难题并没有随着时间推移而被解决,神经网络的研究也陷入停滞。

七、人工智能什么时候被发明?

一、起源

提到人工智能的历史,所有书都会提到1956年度的达特茅斯会议,在这次会上人工智能的鼻祖John mcarthy是发起人,minsky也 积极参与其中,包括我们课本上非常著名的提出信息论的香农本人。

曾经麦卡锡和明斯基都曾经在贝尔实验室为香农打工,当时他们研究的核心就是图灵机,并将此作为智能活动的理论基础。

后来麦卡锡到IBM打工,遇到了研究神经网络的罗切斯特并得到了洛克菲勒基金会的资助,决定在第二年达特茅斯召开人工智能夏季研讨会,这便是人工智能名字的由来。

从1955年到1965年,人工智能进入快速发展时期,在机器学习领域,出现了“跳棋程序”并在1959年实现了人工智能战胜人类的事件打败了当时设计他的设计师Samuel,并在1962年,打败了州跳棋冠军。

在模式识别领域,1956年Oliver selfridge研发了第一个字符识别程序,并在1963年发明了符号积分程序SAINT,在1967年SAINT的升级版SIN就达到了专家级的水准。

同时美国政府也投入了2000万美元资金作为机器翻译的科研经费。当年参加达特茅斯的专家们纷纷发表言论,不出十年,计算机将成为世界象棋冠军、可以证明数学定理、谱写优美的音乐,并且在2000年就可以超过人类。

二、第一次寒冬

但在1965年人工智能迎来一个小高潮之后,质疑的声音也随之到来,Samuel设计的跳棋程序停留在了战胜周冠军,机器翻译领域因为一直无法突破自然语言理解(NLP),1966年的美国公布了一份名为“语言与机器”的报告全盘否定了机器翻译的可行性。

1969年,发起人之一的minsky发表言论,第一代神经网络(感知机perceptron)并不能学习任何问题,美国政府和美国自然基金会大幅削减了人工智能领域的研究经费。在20世纪70年代人工智能经历了将近10年左右的寒冬时期。

三、第二次高潮与寒冬

直到80年代,人工智能进入第二次发展高潮,卡耐基梅隆大学为日本DEC公司设计的XCON专家规则系统(专注于解决某一限定领域的问题,具备2500条规则,专门用于选配计算机配件,因此避免了常识问题)可以为该公司一年节省数千万美金。

同期日本政府拨款8.5亿美元支持人工智能领域科研工作,主要目标包括能够与人交流、翻译语言、理解图像、像人一样进行推理演绎的机器。

但是随后人们发现,专家系统通用性较差,未与概率论、神经网络进行整合,不具备自学能力,且维护专家系统的规则越来越复杂,且日本政府设定的目标也并未实现,人工智能研究领域再次遭遇了财政苦难,随之人工智能发展进入第二次寒冬。

四、第一次算力与算法爆发

上世纪90年代,计算机在摩尔定律下的计算机算力性能不断突破,英特尔的处理器每18-24个月晶体管体积可以缩小一倍,同样体积上的集成电路密集度增长一倍、同样计算机的处理运算能力可以翻一倍。

1989年,还在贝尔实验室的杨立坤通过CNN实现了人工智能识别手写文字编码数字图像。

1992年,还在苹果任职的李开复利用统计学方法,设计了可支持连续语音识别的Casper语音助理(Siri的前身),在1997年IBM的国际象棋机器人深蓝战胜国际象棋冠军卡斯帕罗夫(不再止步于州冠军,第一次真正意义上的战胜人类),同年两位德国科学家提出了LSTM网络可用于语音识别和手写文字识别的递归神经网络。

五、算力+算法+数据三驾马车聚齐:发展进入快车道

直到2006年,也就是我们身处的这不到20年的时间是当代人工智能快速发展的阶段,同年杰弗里辛顿发表了《learning of multiple layers of representation》奠定了当代的神经网络的全新架构。

2007年还在Stanford任教的华裔女科学家李飞飞教授,发起了ImageNet项目,开源了世界上最大的图像识别数据集(超过1400万、2万多标注类别的图像数据集)。

在2006年亚马逊的AWS的云计算平台发布,进一步大幅提升了人工智能网络模型计算所需要的算力。

同时,随着2014年4G时代的到来与智能手机大规模普及,移动互联网的极速发展,催生了覆盖人起居生活工作的方方面面的各色应用,带来了神经网络训练迭代所需的养料“海量的数据”,同时随着IoT物联网的兴起、支持分布式计算(边缘计算)的传感器时序(temporal)数据指数级生成。

六、技术发展离不开政府支持,我国将人工智能列入国家战略

2017年我国政府也引发了《新一代人工智能发展规划》明确了我国新一代人工智能发展的战略目标:到2020年,人工智能总体技术和应用与世界先进水平同步,人工智能产业成为新的重要经济增长点,人工智能技术应用成为改善民生的新途径。

到2025年,人工智能基础理论实现重大突破,部分技术与应用达到世界领先水平,人工智能成为我国产业升级和经济转型的主要动力,智能社会建设取得积极进展;到2030年,人工智能理论、技术与应用总体达到世界领先水平,成为世界主要人工智能创新中心。

人工智能发展简史–符合事物发展本质-螺旋式上升

回顾人工智能历史发展的60多年间,有上升期、有瓶颈期、有寒冬期,但却一直不断的演进进步,正如恩格斯在《自然辩证法》所说,一切事物都是由螺旋形上升运动是由事物内部矛盾引起的,矛盾双方经过反复斗争,引起对立面的两次否定,两次转化,事物的发展从肯定到否定再到否定之否定,形成一个周期性,每一周期的终点同时又是下一周期的开端。

一个周期接着一个周期,每一周期完成时出现仿佛向出发点的复归,形成由无数“圆圈”衔接起来的无限链条,呈现出螺旋形的上升运动。

而如今的我们,正处在一个人工智能高速发展时代,且已经渗透到人们日常生产、生活、工作的方方面面,大家可能会问,为什么不是10年前、20年前而是现在?

这就不得不提人工智能三要素,分别是:算法、算力和数据,三者缺一不可。而人工智能早期发展的瓶颈,很多都是因为你三要素的一种或者多种要素的缺乏,导致人工智能产业陷入短暂的困境,如下图所示。

而如今,随着4G、5G基础网络通讯设施的快速发展,使万物互联成为可能,全球有天文数字级别的人、设备、传感器被连接,产生海量的数据,而这些数据正是人工智能算法模型迭代的充足养料。

而为什么我国有建设成为人工智能创新中心的底气?因为我们国家在网络基础设施建设方面在全球最为领先,移动互动联网渗透人们生产生活最为彻底 ,“配送下乡”的电商平台淘宝、拼多多、京东,美团等互联网“买菜”服务下沉到社区,村子里在直播玩短视频的大爷大妈,每个人都不知不觉的在享受着“人工智能”科技发展所带来的红利,同时也被“算法”支配着时间。

困在算法里的外卖小哥、内容平台利用推荐算法向你定向投喂的“猪食内容”、“人脸”信息被滥用,“算法”的偏见与歧视,正如一切事物的两面性一样、技术的发展同时一定会带来负面的影响,引发社会舆论的挑战。

如何更好的保护人们的隐私的同时,让算法更好的为人们服务?如何让人工智能将来不会“觉醒”,失去控制甚至伤害人类?如何让深度学习这个相对黑盒更具可解释性,更安全、更鲁棒?

相信诸位也跟我刚接触这个领域一样带着许多困惑。这些学界和工业界都已经有一些尝试与探讨,我希望在这本书的有限章节中向你尽可能简要但清晰的分享。

七、人工智能的未来在哪?

未来人工智能又将去向何从,会像是科幻电影里人工智能终将觉醒、他们因为不具备”人性”可以更加理智的不会错的进化统治甚至“奴役”人类?

还是由于人类生存活动使地球的生态环境不断恶化,“病毒”不断肆虐,人类无法外出,只能沉陷于由人工智能创造的虚拟环境中,像是”头号玩家”所描述的世界,在虚幻世界中实现”自我”价值?

虽然无法先知,但是可以预见的是,人工智能未来一定会具备以下趋势:

从专家系统转向通用型的认知智能,像是我们上文提到的早期只能针对问题解决问题的某个细分领域的人工智能,未来的人工智能是更加通用型的、在感知能力的基础上具备像人一样具备认知智能,除了分类、归纳、检测、识别具备推演、预测的能力;

深度学习模型从过去的黑盒不可解释,变得更加具备“可解释性”,从而通过算法模型更公平、更安全、更鲁棒;

深度学习向多模态发展,正如人类文明进行学习不仅仅是通过眼睛观看,还有“口眼耳鼻舌身意、色相声香味触法”,因此深度学习需要多传感器的信息融合进行模型学习训练与判断;

由于高级任务的带标签训练数据十分匮乏,这会促使人们进一步研究稀疏数据环境中的学习技术,比如,小样本学习和自我监督学习以及如何提升学习的效率以及如何让学习的进度追赶上数据产生的进度,增量学习也是一个解决当前现状的实用方向。

数据隐私和数据安全引起社会广泛关注,如何保护隐私的前提下同时进行模型训练迭代,联邦学习已经被大多公司和组织广泛使用。

八、人工智能最开始是什么?

人工智能(Artificial Intelligence), 英文缩写为 AI, 是一门由计算机科学、控制论、信息论、语言学、神经生理学、心理学、数学、哲学等多种学科相互渗透而发展起来的综合性新学科。自问世以来AI经过波波折折,但终于作为一门边缘新学科得到世界的承认并且日益引起人们的兴趣和关注。不仅许多其他学科开始引入或借用AI技术,而且AI中的专家系统、自然语言处理和图象识别已成为新兴的知识产业的三大突破口。

人工智能的思想萌芽可以追溯到十七世纪的巴斯卡和莱布尼茨,他们较早萌生了有智能的机器的想法。十九世纪,英国数学家布尔和德o摩尔根提出了“思维定律“,这些可谓是人工智能的开端。十九世纪二十年代,英国科学家巴贝奇设计了第一架“计算机器“,它被认为是计算机硬件,也是人工智能硬件的前身。电子计算机的问世,使人工智能的研究真正成为可能。

作为一门学科,人工智能于1956年问世,是由“人工智能之父“McCarthy及一批数学家、信息学家、心理学家、神经生理学家、计算机科学家在Dartmouth大学召开的会议上,首次提出。对人工智能的研究,由于研究角度的不同,形成了不同的研究学派。这就是:符号主义学派、连接主义学派和行为主义学派。

传统人工智能是符号主义,它以Newell和Simon提出的物理符号系统假设为基础。物理符号系统是由一组符号实体组成,它们都是物理模式,可在符号结构的实体中作为组成成分出现,可通过各种操作生成其它符号结构。物理符号系统假设认为:物理符号系统是智能行为的充分和必要条件。主要工作是“通用问题求解程序“(General Problem Solver, GPS):通过抽象,将一个现实系统变成一个符号系统,基于此符号系统,使用动态搜索方法求解问题。

连接主义学派是从人的大脑神经系统结构出发,研究非程序的、适应性的、大脑风格的信息处理的本质和能力,研究大量简单的神经元的集团信息处理能力及其动态行为。

人们也称之为神经计算。研究重点是侧重于模拟和实现人的认识过程中的感觉、知觉过程、形象思维、分布式记忆和自学习、自组织过程。

行为主义学派是从行为心理学出发,认为智能只是在与环境的交互作用中表现出来。

人工智能的研究经历了以下几个阶段:

第一阶段:50年代人工智能的兴起和冷落

人工智能概念首次提出后,相继出现了一批显著的成果,如机器定理证明、跳棋程序、通用问题s求解程序、LISP表处理语言等。但由于消解法推理能力的有限,以及机器翻译等的失败,使人工智能走入了低谷。这一阶段的特点是:重视问题求解的方法,忽视知识重要性。

第二阶段:60年代末到70年代,专家系统出现,使人工智能研究出现新高潮

DENDRAL化学质谱分析系统、MYCIN疾病诊断和治疗系统、PROSPECTIOR探矿系统、Hearsay-II语音理解系统等专家系统的研究和开发,将人工智能引向了实用化。并且,1969年成立了国际人工智能联合会议(International Joint Conferences on Artificial Intelligence即IJCAI)。

第三阶段:80年代,随着第五代计算机的研制,人工智能得到了很大发展

日本1982年开始了“第五代计算机研制计划“,即“知识信息处理计算机系统KIPS“,其目的是使逻辑推理达到数值运算那么快。虽然此计划最终失败,但它的开展形成了一股研究人工智能的热潮。

第四阶段:80年代末,神经网络飞速发展

1987年,美国召开第一次神经网络国际会议,宣告了这一新学科的诞生。此后,各国在神经网络方面的投资逐渐增加,神经网络迅速发展起来。

第五阶段:90年代,人工智能出现新的研究高潮

由于网络技术特别是国际互连网的技术发展,人工智能开始由单个智能主体研究转向基于网络环境下的分布式人工智能研究。不仅研究基于同一目标的分布式问题求解,而且研究多个智能主体的多目标问题求解,将人工智能更面向实用。另外,由于Hopfield多层神经网络模型的提出,使人工神经网络研究与应用出现了欣欣向荣的景象。人工智能已深入到社会生活的各个领域。

IBM公司“深蓝“电脑击败了人类的世界国际象棋冠军,美国制定了以多Agent系统应用为重要研究内容的信息高速公路计划,基于Agent技术的Softbot(软机器人)在软件领域和网络搜索引擎中得到了充分应用,同时,美国Sandia实验室建立了国际上最庞大的“虚拟现实“实验室,拟通过数据头盔和数据手套实现更友好的人机交互,建立更好的智能用户接口。图像处理和图像识别,声音处理和声音识别取得了较好的发展,IBM公司推出了ViaVoice声音识别软件,以使声音作为重要的信息输入媒体。国际各大计算机公司又开始将“人工智能“作为其研究内容。人们普遍认为,计算机将会向网络化、智能化、并行化方向发展。二十一世纪的信息技术领域将会以智能信息处理为中心。

目前人工智能主要研究内容是:分布式人工智能与多智能主体系统、人工思维模型、知识系统(包括专家系统、知识库系统和智能决策系统)、知识发现与数据挖掘(从大量的、不完全的、模糊的、有噪声的数据中挖掘出对我们有用的知识)、遗传与演化计算(通过对生物遗传与进化理论的模拟,揭示出人的智能进化规律)、人工生命(通过构造简单的人工生命系统(如:机器虫)并观察其行为,探讨初级智能的奥秘)、人工智能应用(如:模糊控制、智能大厦、智能人机接口、智能机器人等)等等。

人工智能研究与应用虽取得了不少成果,但离全面推广应用还有很大的距离,还有许多问题有待解决,且需要多学科的研究专家共同合作。未来人工智能的研究方向主要有:人工智能理论、机器学习模型和理论、不精确知识表示及其推理、常识知识及其推理、人工思维模型、智能人机接口、多智能主体系统、知识发现与知识获取、人工智能应用基础等。

为您推荐

返回顶部